
Trnum - A Program To Number Figures

July, 1985

Research Institute for Advarrccscf (h r ~ r p i i t e r Science
NASA Ames Hescarch (:enter

(N A S A - C R - 1 8 4 8 9 9) T R W M : A PROGRAM TO NUMBER N90-7 1368

FIGURES (Research I n s t . f o r Advanced
Computer Science) 2 6 p Uncl as

00/61 0295387

Rl ACS
Research Institute for Advanced Computer Science

i

.
Trnum - A Program To Number Figures

Matt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

Trnum is a preprocessor for NROFF and TROFF text which
enables users to label figures, displays, tables, and equations sym-
bolically. This program then translates the labels into consecutive
integers which may be printed in a variety of formats. In addition,
prefixes and suffixes may be defined in such a way that they are
automatically prepended or appended to the number. A number of
different counters may be used, and the symbols may appear any-
where in the body of the paper. This document contains a tutorial
as well as a detailed description of the program.

July 17, 1985

Trnum - A Program To Number Figures

Mutt Bishop

Research Institute for Advanced Computer Science
NASA Ames Research Center

Moffett Field, CA 94035

t

I. Introduction

A problem which authors of papers often have is that of numbering figures

or equations while the paper is being written. One finds that a new picture, or

equation, must be inserted between two others; as a result, the numbering of all

such diagrams after the newly-inserted one is not correct. Tracking down the

numbers, and correcting them, is very time-consuming and painstaking. More

often than not, one will overlook a number; the result may be that the reader

will become confused.

Trnurn is intended to alleviate this problem. It enables the user to label

something with a pair of names; when a new figure is inserted, the user need not

change any of the pairs in the text. Trnurn numbers pairs in the order in which

they occur, thereby relieving the user of the burden of changing all the numbers

of the figures after the one inserted.

This document has 6 sections. The second gives an overview of the pro-

gram, the third describes the labels which ttnurn replaces with numbers, and the

fourth lists miscellaneous commands. Invoking this program under UNIXt is

t UNIX M a Trademark of Bell Laboratories.

- 2 -

described in the fifth section. The last section is a tutorial on using trnum. An

appendix tersely summarizes the information, for quick reference.

11. Overview

Trnum copies most text from its input files to the standard output; certain

strings called pairs (which are described in the next section) are replaced by

labels, and lines beginning with “.\” trnum:” allow the user to force certain

actions to occur. These will be discussed separately.

Trnum maintains 101 counters, each of which begins at 1 and increases as

new symbols are defined. The user may name these counters as he pleases. Each

counter allows 2039 different symbols, the names of which the user chooses; a

symbol may be defined in as many counters as the user likes. Each counter and

symbol pair represents a different label; two different counters may have symbols

with the same name, but the numbers associated with the two pairs need not be

the same.

When a counter is created, certain attributes associated with that counter

are set as indicated by that pair. These attributes are the prefi (a string which

is printed before the number associated with the pair), the sufiz (a string which

is printed after the number associated with the pair), and the format (a charac-

ter indicating how the number associated with the pair is to be printed). When-

ever this counter is referenced, unless new values of these attributes are given in

the pair referencing that counter, the values used will be those associated with

the counter.

- 3 -

Iii. P&s

A counter and symbol is referred to by a sequence of characters called a

pair, which has the following format:

<[prefiz+][countcr.][symbol][:format][-su~>

The brackets enclose parts of the pair associated with one another. In detail, the

parts are:

counter

symbol

format

This is a sequence of characters terminated by ‘L+7’ . It is

prepended to the number associated with the counter and symbol.

The default is the null string.

This is a sequence of alphanumeric characters terminated by ‘L.”

(period). It names the counter to which the symbol refers. The

default is the counter “default”.

This is a sequence of alphanumeric characters which names the

symbol. There is no default.

This character indicates in what form the number associated with

the counter and symbol is to be printed, and it is preceded by %”

(colon). The available formats are:

Numbering
Seauence Format

1
001

i
I
a
A

0,1,2,3,4,5 ,...
OO0,OO 1,002,003,004,005 ,. . .
O,i,ii,iii,iv,v,. . .
O,a,b,c ,. . . ,z,aa,ab,. . . ,zz,aaa,. . .
O,A,B,C ,... ,Z,AA,AB ,..., ZZ,AAA ,...

O,I,II,III,lv,V ,...

An Arabic format having n digits specifies a field width of n digits

- 4 -

(see the entry for 001 in the table.) Note the formats are the same

as for the macro “.af” in NROFF and TROFF. The default format is

format 1 (Arabic numbers in the form of line 1 of the above table.)

This is a sequence of characters preceded by “-” and terminated

by “>”. It is appended to the label number associated with the

counter and symbol. The default suffix is the null string.

Notice that any character except “+”, “.”, “:”, “-”, “<”, “>”, and “%”

may appear in the prefix and the suffix; to put of these characters (called control

Characters) in the prefix or suffix, precede it with the quote character “%”. (For

example, “%%” in the prefix will set the prefix to “%”.) Only letters (both upper

and lower case), digits, and the underscore character may appear in counter and

symbol names. In addition, the format string must be one of the ones described

there (that is, “i”, “I”, “a”, “A”, or a string of 1 or more Arabic digits); errone-

ous formats are not caught. If a sequence of characters does not meet the

description above, ttnum will assume the sequence is not a pair and simply copy

it to the output. In general, this is trnum’s approach to all input: if it is a pair,

replace it - otherwise, copy it.

One of the symbol and counter names must be present; any of the other

parts of the pair may be omitted. In all cases where a symbol name is present,

the appropriate default associated with the counter is used when something is

omitted. (If the counter name is omitted, the name “default” is used.) If the

symbol name is omitted, but the counter name is present, the pair is copied to

the output, but any counter referenced by it (the one named “default”, if no

- 5 -

name is given explicitly) is created and init ialid. This is most useful when the

default attributes of the counter a m to be set differently than the values required

the first time the counter is used.

Here are some examples of pairs:

<Figure +fig.Mo queue:I-%.>

A counter is defined whenever it is first encountered, 80 if the counter “fig” has

not been used before this pair occurs, this pair will define it, and set the default

prefix, suffix, and format for that counter to-the stringa “Figure ”, “.”, and “I”,

respectively. (Notice that the blank in the prefix need not be quoted.) In this

case, the text “Figure 1.” would replace the pair. If the counter had been

encountered before (for this example, suppose “fifo - queue” were the fourth sym-

bo1 defined for that counter), regardless of the attributes associated with the

counter “fig”, the pair would be replaced by “Figure IV.”, since any attributes

named explicitly in the pair override the default attributes associated with the

counter. Thus, to suppress the prefix and suffix and force Arabic format, give

explicitly null attributes (for the above example,

<+fig.Ho - queue:->

will suppress all default attributes and use the default, Arabic, format.)

<maint heorem>

This defines a symbol, “maintheorem”, which is associated with the default

counter. It will be printed as an Arabic numeral. If the pair

<maintheorem:i>

is encountered later on, the number associated with the symbol “maintheorem”

and counter “default” will be printed as a lower-case Roman numeral.

- 6 -

IV. Verbs

Occasionally it is useful to be able to exercise more detailed control over

counters and their component symbols. For example, when beginning a new

chapter of a thesis, certain counters, such as a subsection number counter,

should be reset. Trnum offers these capabilities by means of verbs.

A verb is a command indicating that special action is to be taken. It is

given on a line beginning with “.\I1 trnum:”, immediately following the colon

(blank spaces may be put between the colon and the verb.) Note these linee are

treated as comment lines by NROFF and TROFF and so are ignored. Only enough

of the verb to identify it uniquely need be given. Any argument8 to the verb are

placed after it. The verbs are:

begin Change the character indicating that a pair begins to the first char-

acter of the first argument to the verb; for example,

.\‘I trnum: begin (

indicates that pairs will begin with “(”. Initially, this character is

“<”.

control This macro prints on the error output (usually the terminal) the

control characters and verbs.

define This verb indicates the pairs named as arguments are to be defined.

It is useful when pairs must be numbered in an order other than

that in which they occur. If the symbol name in aga i r is omitted,

the counter is initialized but no symbol is entered.

- 7 -

end

format

on

Pref;

print

Change the character indicating that a pair en& to the first char-

acter of the first argument to the verb; for example,

.\l' trnum: end)

indicates that pairs will end with ")". Initially, this character is

">".

Change the character indicating the format begins to the first char-

acter of the first argument to the verb; for example,

.\" t m m : format #

indicates that the format description will begin with "#". hitially,

this character is ":" (colon).

This verb turns off the interpretation of pairs; trnurn just copiea the

input to the output until interpretation is turned back on (see on,

below.) It is useful when escaping character sequences which look

like pairs but are not pairs, and which h u m would otherwise

replace with numbers. (An alternative is to quote the beginning

character of the pair.)

This verb turns on the interpretation of pairs. See ofi above.

Change the character terminating the prefix of the first argument

to the verb; for example,

.\'l trnum: prefix ;

indicates that prefixes will end with ";". Initially, this character is

"+".
This macro prints to the error output (usually the terminal) the

label associated with any pairs given as arguments. If the symbol

quote

reset

name is omitted, the labels of all symbols associated with the

named counter are printed; if the counter name is omitted, the

labels of all symbols with that name (in all counters) are printed;

and if both the symbol and counter names are omitted, the labels

of all defined pairs are printed.

Change the quote character to the first character of the first argu-

ment to the verb; for example,

.\I1 trnum: quote \

indicates that the quote character will be "\". Initially, this chax-

acter is "%".

This macro indicates the pairs named as arguments are to be reset;

it is identical to undefining the pair, then defining it again, and is

included as a convenience.

separator Change the character separating the counter name from the symbol

name to the first character of the first argument to the verb; for

example,

.\I1 trnum: separator ,

indicates that the counter name and the symbol name will .be

separated by ",". Initially, this character is ".".

S U B 2 Change the character indicating the suffix begins to the first char-

acter of the first argument to the verb; for example,

.\'I trnum: suffix *

- 9 -

indicates that suffixes will begin with “*”. Initially, this character

is ((-”.

terse This turns off verbose mode.

undefinc This verb indicates the pairs named as arguments are to be

undefined. It deletes them from the appropriate counters. Pairs

occurring as arguments are replaced by their definition before being

undefined. If the symbol name in a pair is omitted, the counter is

undefined; this deletes both the counter and all its symbols.

verbose This verb turns on verbose mode. In verbose mode, every pair

encountered is printed; this is most useful for debugging input text.

By default this mode is 0% the command-lie option -v will turn

it on for all the input. This mode may be turned on with this verb,

and turned off with the verb terse.

Note that the control limes are copied to the output, but pairs occurring on

them are not replaced. The verbs define, undefinc, reset, and print may have

more than one argument; but the verbs begin, end, sepurutor, format, pre&

quote, and su& ignore any text after the first character of the next word. If

there is no nonblank word following those verbs, the appropriate character is

turned off, so it cannot be matched; since no two control characters may be the

same, this is necessary to change one control character to another. For example,

if the control character beginning pairs is L L < ” , the control character ending

pairs is “>”, and they are to be interchanged, the appropriate sequence of com-

mands is:

- 10-

.\I1 trnum: begin

.\I’ trnum: end <

.\I1 trnum: begin >

As another example, the following changes the characters which begin and

end pairs and separate counter names from symbol names:

. \ I1 trnum: begin {

.\I1 trnum: end }

.\I’ trnum: separ ,

After these three lines, {al,b2} will be recognized as a pair; however, <al.b2>

will not.

V. Use

To run trnum, place it before other preprocessors to NROFF and TROFF; for

examp le,

trnum [-C] 1 -v] file ... I refer I pic I tbl I eqn I troff

(see [TUTH84], [LESK79], [KERN78], [KERN82), and [OSSA76].) If the file “-”

is encountered, trnum reads from the standard input. If no files are named,

trnurn takes its input from the standard input. If the option -v is given, pairs

are printed on the error output as they are encountered in the text. The option

-C puts trnum into a compatibility mode; see the next section.

VI. Compatibility with Older Versions

There are a few visible differences between this version of trnurn and the ear-

lier version. In earlier versions, the default quote character was ‘\’ rather than

‘%’; lines with trnurn verbs began with “.NU”;‘ and several verbs were not recog-

nized. To enable documents written to use this earlier version to be run without

- 11 -

changes, give the --C flag. Note that the new verbs wiii be recognized, but the

quote character and verb line indicator will be what the earlier version expects.

To determine the version being run, give the command

trnum -I

On the earlier version, this will produce the message

tmum: bad switch -I

and leave trnum waiting for input (just type your end-of-file symbol, usually

control-D, to cause it to exit); on this (and future) versions, it will print a ver-

sion number and date.

VII. A Tutorial

Suppose you are typing a paper, and you decide that you want to numbex

your tables. Pick a symbol; say, “format”. Then, whenever you refer to this

table, rather than saying “table number 1,” you would say “table number <for-

mat>”. Trnum will replace “<format>” with the appropriate number wherever

it occurs. (If you left off the angle brackets “< ... >”, trnum would not replace

anything. The angle brackets signal h u m to look at what they enclose; if it is a

legal string (we’ll get to what’s legal in a bit), then, and only then, does trnum

do the replacement.

Trnum assigns a number to a symbol the firat time it is seen; hence, you do

have to be careful in what order you refer to labelled things. For example, in the

input

The next tables give information about the attributes
which affect the definitions of counters.
Notice that table <defaults> contains the default

- 1 2 -

Name
p r e h

counter
symbol
format
suffix

settings for the attributes in table <attributes>:
.TS
box, center, tab(;);

cB2 I c
cB2 I 1.
<attributes>. Attributes.
Name;Meaning

pre6x;prepended to label
counter;counter name
symbo1;symbol name
format;how to print label
suffix;appended to label
.TE
. TS
center, box, tab(;);

cB2 I c
cB2 I c
cB2 1 1.
<defaults>. Defaults
What;Default
\ ̂ ;Values

prefix;\fInull string\fP
format;\fEU\fP
counter;\fBdefault\fP
suffix;\fInull string\fP
.TE

c s

-

c s

-

Meaning
prepended to label
counter name
symbol name
how to print label
appended to label

the label “<defaults>” will be replaced by 1, and the label “<attributes>” by 2,

because that is the order the labels occur in the text:

- 1s -

I I. Defaults I

Unfortunately, it’s also backwards - table 1 should precede table 2.

To allow this, ttnurn lets you define labels on command lines, which begin

with “.\” tmum:”. Notice that these are ignored by TROFF and NROFF since

they are comments. So, to get the labels to come out right in the above exam-

ple, just before the first l i e , insert the l i e

.\“ tmum: define <attributes>

Then, since “<attributes>” came before “<defaults>”, it will be defined as 1,

and the tables will be numbered in the order they appear.

The next tables give information about the attributea which affect the definitions of
counters. Notice that table 2 contains the default settings for the attributcs in table
1:

1. Attributes. I Name I Meaning

counter

~~

prepended to label
counter name
symbol name
how to print label
appended to label

I 2. Defaults I what I I values

Usually, you want to keep several counts going at the same time; for exam-

ple, you rarely want to number an equation as 1, the next table as 2, the next

- 14

equation as 3, and so forth. What you usually want is to number the first equa-

tion as l, the first table as l, the next equation as 2, and then refer to them as

equation 1, table 1, and so forth. To enable you to do this, trnurn has several

different counters; each starts at 1. To name a particular counter, prefix the

symbol with the counter name followed by a period “.”. In the above example, if

we wanted to use a counter named “table” to keep track of the tables, we would

write “<table.attributes>” and “<table.defaults>” instead of “<attributes>”

and “<defaults>”, respectively. Like symbols, a counter is initialized when it is

first encountered; unlike symbols, when a counter is initialized, it always starts

at 1. You can define up to 101 different counters, and if you omit the counter

name, a default counter is used. (This counter’s name, incidentally, is

“default ”.)

Sometimes you would like to restart a counter at 1. There are two ways to

do this. You could delete the counter, and then redefine it with

.\I1 trnum: undefine < countername.>

.\I1 trnum: define <countername.>

Alternatively, you could say

.\I1 trnum: reset <countername.>

which does the same thing. Note the “.”; you haoe to have it or trnurn will think

you mean the symbol countername and not the counter. Omitting the symbol

causes the action to affect the counter rather than a symbol. Also, the string is

passed through trnurn; unlike strings involving symbols, it is not replaced by

anything. Be aware that when you reset or undefine a counter, it undefines all

symbols for that counter too.

- 15 -

hcidentaiiy, you can delete a s y d d , tts. Each csaiitei ea;; h a ~ r 2039

symbols dehed for it; this should be more than enough for most people. How-

ever, if it is not, to delete a symbol, say:

.\” tmum: undefine <eountcrnamc.~ymboZnamc>

Resetting a symbol just undefines it, and then redefines it.

Normally, numbers are printed in Arabic format, without any leadiig

zeroes. This is not always what you want; for instance, some people prefer that

tables be numbered with Roman numerals. Trnurn allows you to control how a

counter is printed by a format field. The format field follows the symbol name,

and is preceded by a colon (“:”). For example, to print the table labeh as

Roman numerals in the example above, we would write “<table.attributes:I>”

and “<table.defaults:I>” (the “I” indicates capital Roman numerale. Other for-

mats available are lower-case Roman numerals (the format indicator is “i”), cap-

ital letters (format indicator “A”), lower-case letters (format indicator “a”), and

Arabic numerals with or without leading zeroes (indicate this by an Arabic

number containing as many digits as you want printed, including leadiig

zeroes.) The format indicator is an attribute of the eouILtcr, not of the symbol.

This last comment deserves explanation. When a counter is initialized,

several attributes are created (one of which is the format indicator; we’ll deal

with the others below.) The format specified in the label which creates the

counter becomes the default format for that counter. It can be overridden for

any label by specifying a format explicitly in that label, but if no format indica-

tor is given, the default one will be used.

- 16-

.\It trnum: define <table.:I>

.\‘I trnum: define <table.attributes>
The next tables give information about the attributes
which affect the definitions of counters.
Notice that table <table.defaults> contains the default
settings for the attributes in table <table.attributes:OO>:
.TS
box, center, tab(;) ;

cB2 I c
cB21 1.
< t a b l e d tributes>. At tributes.
Name;Meaning

c s

-
pre6x;prepended to label
counter;counter name
symbo1;symbol name
format;how to print label
suffix;appended to label
.TE
.TS
center, box, tab(;) ;

cB21 c
cB2(c
cB21 1.
<table.defaults>. Defaults
What;Default
\ *;Values

c s

Fefix; \nnuU string \ f ~
format;\fBI\fP
counter;\fBdefault \fp
suffix;\fInull string\fP
.TE

In this text, all table numbers will be printed as Roman numerals, because when

the counter “table” is created (by the first “.\” trnum:”), its format indicator is

“I”. However, when the number for the label “<table.attributes:OO>” is printed,

since there is an explicit format indicator with the label (the “00”) it will be

printed as a two-digit Arabic numeral:

The next tables give information about the attributes which affect the definitions of
counters. Notice that table 2 contains the default settings for the attributes in table
01:

- 17 -

N.mc
prefix

counter
symbol
format
S n e

Meaning
prepended to label
counter name
symbolname
how to print label
amended to label

I 2. Defaults

I -t I i

Notice that only the label with the “00” format indicator given explicitly is

affected.

There are two other attributes which may be set; a prcfiz, which is

prepended to every label which uses that counter, and a mf&, which is appended

to every label which uses that counter, The prefix precedes the counter name and

is followed by a plus sign (“+”); the suffix follows the format indicator, and is

preceded by a minus sign (“-”). As with the format indicator, the defaults may

be explicitly overridden in any label.

Going back to our perennial example, notice in the two lines of text the

table number is preceded by the word “table” and a blank. To get this prefix

prepended automatically, we would define the counter by:

.\‘I tmum: define <table +table.:I>

Then, the sample text becomes:

.\I’ trnum: define <table +table.:I>

.\‘I trnum: define <table.attributes>
The next tables give information about the attributes
which affect the definitions of counters.

- 18 -

Notice that <table.defaults> contains the default
settings for the attributes in < t able.at tributes:00 > :
.TS
box, center, tab(;);

cB2 I c
cB21 1.
< + t able.at t ribu t es > . Attributes .
Name;Meaning

prefix;prepended to label
counter;counter name
symbo1;symbol name
format;how to print label
suffix;appended to label
.TE
.TS
center, box, tab(;);

cB2 I c
cB2 I c
cB21 1.
<+table.defaults>. Defaults
What ;Default
;Values

prefix; null rtring
format;l
counter ; defaul t
suffix; null rtring
. TE

c s

-

c s

-

(notice the explicitly null prefixes within the tables themselves) and prints as:

The next tables give information about the attributes which affect the definitions of
counters. Notice that table I1 contains the default settings for the attributes in table
01:

I. Attributes.
Name
p r e h

c onnter
symbol
format
s u e

Meaning
prepended to label
counter n.ame
symbol name
how t o print label
appended to label

- 19 -

11. Defaults
Default I m a t I Values

Suffixes are handled the same way. Note that within the same text, the

table numbers in the body of the tables end with a period. However, since a

period separates the counter and symbol, it is a control character, and hence

must be escaped. Thus, we must write

.\" trnum: define <table +table.:I-%.>

and the text would look like:

.\'I trnum: d& <table +table.:I-%.>

.\" trnum: d d a c <table.attributes>
The next tables give information about the attributes
which affect the definitions of counters.
Notice that <table.defaults-> contains the default
settings for the attributes in <table.attributes:OO->:
.TS
box, center, tab(;);

cB21 c
cB21 1.
<+table.attributes> Attributes.
Name;Meaning

pre6x;prepended to label
counter;counter name
symbo1;symbol name
format;how to print label
suf6x;appended to label
.TE
.TS
center, box, tab(;);

cB2 I c
cB2 I c
cB2 I 1.
< +table.defaults> Defaults
What;Default
\ ";Values

c s

-

c s

- 20 *

-
prefix;\nnull string\fP
format;\fSI\fP
counter;\fSdefault \fP
suffix;\nnull string\fP

As a final example, here is the text of a proof of the irrationality of e , the

base of the natural logarithms [RUDI76]:

.\I' trnum: define <(+equation.:l\-)>
Recall
.EQ <equation.edef>
e -=- sum from k-0 to inf { 1 over k!}
.EN
Choose
.EQ <equation.el>
s sub n -=- sum from k=O to n { 1 over k!} .
.EN
By <equation.el> and <equation.edef>, we see
. EQ <equat ion.e2 >
0 -<- e --- s sub n - < - { 1 over n!n } - .
.EN
Assume
.I e
is rational;
then $e =- p over q$,
where
.I P
and
.I q '

are positive integers.
By <equation.e2>,
.EQ <equation. eS >
0 -<- q!'(e'-'s sub q) -<-{l over q} - .
.EN
By our assumption, $q!e$ is an integer.
Since by <equation.el>,
.EQ <equation.el>
q! s sub q -=- q! (1 -+- 1 -+- { 1 over 2!} -+- ... -+- { 1 over q!})
.EN
is an integer,
we see that $q! (e --- s sub q)$ is an integer.
As $q - >=- 1$,
<equation.ef> implies there is an integer between 0 and 1, contradiction.

.

which produces:

Recall

- 21 -

Choose

By (2) and (l), we see

Assume e is rational; then

1
n !n

O < e - a m < - .

e = 2, where p and qare positive integers. By (3),
9

(4)
O < q ! (e - a q) < - . 1

9
By our assumption, g !e is an integer. Since by (2),

q ! r , = q!(1 + 1 + - 1 + ' . . + -) 1
2! Q !

is an integer, we see that q ! (e - a q) is an integer. As q 3 1, (4) implics there is an
integer between 0 and 1, contradiction.

This covers the basics of tmum; the first sections of this guide explain =me

other, less often used, features. In case you ever want to see what labels you

have defined, the line

.\ll tmum: print <>

will cause all defined labels to be printed on the standard error. You can restrict

the printing.to one counter by naming it, as:

.\" tmum: print <countername.>

The other forms of this statement are less useful, and are documented in the

second section.

The subject of naming things deserves mention. The characters which may

be used to name symbols and counters are all letters (both cases), all digits, and

underscore (" - "). The characters which may be used in prefixes. and suffixes are

any except the control characters "<", 'L+", ".", ":", "-", ">", and "%", and

these may be used by prefixing them with the quote character "%". This is fone

- 22 -

specifically to allow string registers to be named in the prefix or suffix strings.

So, to print the contents of the string register “*(BF” before the label, and the

contents of the string register “*(AF” before the label, you would type:

<* (BF+counternarne.syrnbolnarne-*(AF>

A word of warning when quoting characters: trnurn recognizes the quote charac-

ter only when the next character begins a pair, or when within a pair. In these

cases, it throws away the quote character and accepts the next character

literally; any special effects which would normally take place, such as beginning

another part of the pair, are ignored. Further, if the quote character precedes a

character which would normally begin a pair, the quote character is not printed,

and no pair is begun. In all other cases, the quote character is simply copied

through.

The characters which quote characters, begin and end pairs, and separate

parts of a pair, may be reset; but they must not be reset to a character which is

one of the control characters. Hence, you could reset the character indicating

the beginning of a pair to “{”, but not to “+”. To get around this, you can

“turn off’ a control character by defining it to be null, that is,

.\‘I trnum: begin

Acknowledgements

This program grew out of a similar but simpler version written at Purdue

University. Subhash Agrawal suggested the idea and helped debug and refine

the original program.

- 23 -

References

[KERN781 Kernighan, Brian W. and Cherry, Lorinda L., “Typesetting
Mathematics - User’s Guide (Second Edition) ,” internal mcmoran-
dum, Bell Laboratories, Murray Hill, N J 07974 (August 1978).

[KERN821 Kernighan, Brian W., “PIC - A Graphics Language for Typesetting
User Manual,” internal memorandum, Bell Laboratories, Murray Hill,
N J 07974 (March, 1982).

[LESK79] Lesk, M. E., “Tbl - A Program to Format Tables,” internal
memrandum, Bell Laboratories, Murray Hill, NJ 07974 (January
1979).

[OSSA761 Ossanna, Joseph F., “NROFF/TROFF User’s Manual,” i n t e d
memorandum, Bell Laboratories, Murray Hill, N J 07974 (January
1979).

[RUDI76] Rudin, Walter, Principles of Mathematical A d p s i 4 Third Edition,
McGraw-Hill, Inc., (1976).

ITUTH84) Tuthill, Bill, “Refer - A Bibliography System,” UNIX User’s
Manual, Volume 2, Computer Science Division, Department of Electr-
ical Engineering and Computer Science, University of California,
Berkeley, CA 94720 (July 1984).

- 24 -

Format

1

Appendix - Quick Guide To Trnum

Pairr
< [pref;+l[counter.][symbol](:format](-sufiz]>

where prejiz and rufiz are strings to be put before and after (respectively) the text, counter is the
name of the counter, dymbol is the name of the symbol, and format is the format in which the
label is t o be printed. Strings for the counter and symbol may contain only alphanumeric and
underscore characters; strings for the prefiz and sufiz may contain any character that is not
currently a control character; control characters may be included by quoting them with the quote
character. The format string must be one of those in Table I. An Arabic format having n digits
specifies a field width of n digits (see the second line of Table I.) Defaults for the attributes are
given in Table 11. There is no default symbol name.

To force trnum t o ignore a pair, precede it with the quote character, or set the prefix char-
acter to ASCII NUL, or put the line “.\lt trnum: off’ before the pair, and the line “.\It trnnm: on”
after it.

Changing Control Characters
These are listed in Table 111 and are given as the first word after the colon on lines begin-

ning with ‘‘.\It trnum:”. The control character is changed t o the first character of the second
word, or set to ASCII NUL if there is no second word; the rest of the line is treated as though there
were no verb there.

Other verba

ning with “.\!’ trnum:”.

Use
trnum [-C] [-I] [-v] f l e ... I refer 1 tbl l eqn I troff

If the file “-” is encountered, trnum reads from the standard input. If no files are named, trnum
takes its input from the standard input. If the option -v is given, pairs are printed on the error
output as they are encountered in the text. If the option -I is given, the version number and
date are printed and trnum exits. If the option -C is given, trnum will correctly process files
intended for the first version.

Tables

These are listed in Table IV and are given as the first word after the colon on lines begin-

Numbering
Sequence

1,2,3,4,5 ,...

Table I. Formati

~

control
define
off
on

print
reset
term

ondcflne
verbose

print control characten on stderr
define counter or symbol
turn frnumoff
turn frnum on
print denned pa in on itderr
undefine, then define counter or symbol
turn 06 -v option
delete counter or symbol
turn on -v option

0Il 1 001~~02,003,004,005 ,... 1
l,ll,l~l,lv,v (...
IJIJIIJV,V, ...
a,b,c ,..., z,aa,ab ,..., zz,- ,...
A,B,C ,..., Z,AA,AB ,..., 22,AAA ,...

a
A

what

begin format
end counter
be%ll P. ir
end plir
beginiolHx
end p r e h
quote

I Table 111. Changing Control Characten I
initial verb to
value change value

: forme1
. reporetor
< bep.n
> end
- 8UffiZ

+ t r e f i t
\ quote

I Table 11. Default I

Table IV. Miscellaneoui Verbs
what 1 effect

